ECE-223, Solution for Assignment \#7

Digital Design, M. Mano, $3^{\text {rd }}$ Edition, Chapter 6

6.6) Design a 4-bit shift register with parallel load using D flip-flops. These are two control inputs: shift and load. When shift $=1$, the content of the register is shifted by one position. New data is transferred into the register when load $=1$ and shift $=0$. If both control inputs are equal to 0 , the content of the register dose not change.

First stage of the register:

6.7) Draw the logic diagram of a 4-bit register with four D flip-flops and 4×1 mutiplexers with mode selection input s_{1} and s_{0}. The register operates according to the following function table:

s_{1}	$\mathrm{~s}_{0}$	Register Operation
0	0	No Change
0	1	Complement the four Output
1	0	Clear register to 0 (Synch)
1	1	Load parallel data

One stage of the register:

6-9) Two ways for implementing a serial adder ($A+B$) is shown in Section 6-2. It is necessary to modify the circuits to convert them to serial subtractors (A-B).
a) Using the circuit of Fig. 6-5, show the changes needed to perform $\mathrm{A}+2$'s complement of B.
b) Using the circuit of Fig. 6-6, show the changes needed by modifying Table 6-2 from an adder to a subtractor circuit. (See Problem 4-12).
a) Complement the serial output of the register B (with an Inverter) and set the initial value of carry to " 1 "
b)

PS	Input		NS	Output	FF inputs	
$\mathrm{Q}(\mathrm{t})$	x	y	$\mathrm{Q}(\mathrm{t}+1)$	D	JQ	KQ
0	0	0	0	0	0	X
0	0	1	1	1	1	X
0	1	0	0	1	0	X
0	1	1	0	0	0	X
1	0	0	1	1	X	0
1	0	1	1	0	X	0
1	1	0	0	0	X	1
1	1	1	1	1	X	0

$$
\mathrm{J}_{\mathrm{Q}}=\mathrm{x}^{\prime} \mathrm{y}
$$

$$
\begin{gathered}
\mathrm{K}_{\mathrm{Q}}=\mathrm{xy} y^{\prime} \\
\mathrm{D}=\mathrm{x} \oplus \mathrm{y} \oplus \mathrm{Q}
\end{gathered}
$$

6-10) Design a serial 2's complementer with shift register and a flip-flop. The binary number is shifted out from one side and it's 2's complement shifted into the other side of the shift register.

See solution for Problem 5-7

Page: 3

6-13) Show that a BCD ripple counter can be constructed using a 4-bit binary ripple counter with asynchronous clear and a NAND gate that detects the occurrence of count 1010.

6-24) Design a counter with T flip-flops that goes through the following binary repeated sequence: $0,1,3,7,6,4$. Show that when binary states 010 and 101 are considered as don't care conditions, the counter may not operate properly. Find a way to correct the design.

Present State				Next State				Flip-Flop Inputs			
A	B	C	A		T_{A}	T_{B}	T_{C}				
0	0	0	0	0	1	0	0	1			
0	0	1	0	1	1	0	1	0			
0	1	0	X	X	X	X	X	X			
0	1	1	1	1	1	1	0	0			
1	0	0	0	0	0	1	0	0			
1	0	1	X	X	X	X	X	X			
1	1	0	1	0	0	0	1	0			
1	1	1	1	1	0	0	0	1			

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{A} \oplus \mathrm{~B} ; \mathrm{T}_{\mathrm{B}}=\mathrm{B} \oplus \mathrm{C}
$$

$$
\mathrm{T}_{\mathrm{C}}=\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}
$$

Not self-correcting
To correct the design, assume that next state of 010 is XX0:

$\stackrel{y y}{c} \mathrm{~B}$				
$\mathrm{~A} \downarrow$AIBC 00 01 11 10 0 1 0 0 0 1 0 X D 0				

$$
\mathrm{T}_{\mathrm{C}}=\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}
$$

self-correcting

