ECE-223, Solution for Assignment #7

Digital Design, M. Mano, 3rd Edition, Chapter 6

6.6) Design a 4-bit shift register with parallel load using D flip-flops. These are two control inputs: shift and load. When shift = 1, the content of the register is shifted by one position. New data is transferred into the register when load = 1 and shift = 0. If both control inputs are equal to 0, the content of the register dose not change.

6.7) Draw the logic diagram of a 4-bit register with four *D flip-flops* and 4×1 mutiplexers with mode selection input s_1 and s_0 . The register operates according to the following function table:

s_1	s_0	Register Operation			
0	0	No Change			
0	1	Complement the four Output			
1	0	Clear register to 0 (Synch)			
1	1	Load parallel data			

One stage of the register:

- 6-9) Two ways for implementing a serial adder (A+B) is shown in Section 6-2. It is necessary to modify the circuits to convert them to serial subtractors (A-B).
 - a) Using the circuit of Fig. 6-5, show the changes needed to perform A+2's complement of B.
 - b) Using the circuit of Fig. 6-6, show the changes needed by modifying Table 6-2 from an adder to a subtractor circuit. (See Problem 4-12).
 - a) Complement the serial output of the register B (with an Inverter) and set the initial value of carry to "1"

b)

PS	Input		NS	Output	FF inputs	
Q(t)	x y		Q(t+1)	D	JQ	KQ
0	0	0	0	0	0	X
0	0	1	1	1	1	X
0	1	0	0	1	0	X
0	1	1	0	0	0	X
1	0	0	1	1	X	0
1	0	1	1	0	X	0
1	1	0	0	0	X	1
1	1	1	1	1	X	0

6-10) Design a serial 2's complementer with shift register and a flip-flop. The binary number is shifted out from one side and it's 2's complement shifted into the other side of the shift register.

See solution for Problem 5-7

Page: 3

6-13) Show that a BCD ripple counter can be constructed using a 4-bit binary ripple counter with asynchronous clear and a NAND gate that detects the occurrence of count 1010.

6-24) Design a counter with *T flip-flops* that goes through the following binary repeated sequence: 0, 1, 3, 7, 6, 4. Show that when binary states 010 and 101 are considered as *don't care* conditions, the counter may not operate properly. Find a way to correct the design.

Present State			Next State			Flip-Flop Inputs		
A	В	C	A	В	C	T_{A}	T_{B}	$T_{\rm C}$
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	X	X	X	X	X	X
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	X	X	X	X	X	X
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

$$T_{A} = A \oplus B; T_{B} = B \oplus C$$
 $A \oplus B \oplus C$
 $A \oplus C \oplus C$
 $A \oplus C$

$$T_{C} = AC + A'C'$$

Not self-correcting

To correct the design, assume that next state of 010 is XX0:

$$T_{C} = AC + A'B'C'$$

$$101$$

$$010$$

$$100$$

self-correcting